
Penetration Test Report

Tracking the Trackers

V 1.0
Amsterdam, September 28th, 2022
Confidential

Document Properties

Client Tracking the Trackers

Title Penetration Test Report

Targets Deployment scripts
F-droid client

Version 1.0

Pentester Abhinav Mishra

Authors Abhinav Mishra, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 September 19th, 2022 Abhinav Mishra Initial draft

0.2 September 28th, 2022 Marcus Bointon Review

1.0 September 28th, 2022 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 6

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Reconnaissance and Fingerprinting 10

4 Findings 11
4.1 CLN-002 — XML parsers might be vulnerable to XXE attacks 11

4.2 CLN-005 — Vulnerable TLS versions accepted 12

4.3 CLN-001 — Encryption algorithms using insecure mode and padding scheme 13

4.4 CLN-003 — Clear text traffic is enabled in the application 15

4.5 CLN-004 — HTTP Request URLs are logged 16

5 Non-Findings 17
5.1 NF-007 — Review of Nearby Swap Feature 17

5.2 NF-006 — Review of Deployment Scripts 17

6 Future Work 18

7 Conclusion 19

Appendix 1 Testing team 20

1 Executive Summary

1.1 Introduction

Between September 5, 2022 and September 19, 2022, Radically Open Security B.V. carried out a penetration test for

Tracking the Trackers

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

• Deployment scripts

• F-droid client

The scoped services are broken down as follows:

• Review of deployment scripts: 1 days

• F-droid client review: 3 days

• Reporting: 1 days

• Total effort: 5 days

1.3 Project objectives

ROS will perform a penetration test of the F-droid client and review the deployment scripts with Tracking the Trackers

in order to assess their security. To do so ROS will access the F-droid client app and the deployment scripts, and guide

Tracking the Trackers in attempting to find vulnerabilities, exploiting any such found to try and gain further access and

elevated privileges.

1.4 Timeline

The Security Audit took place between September 5, 2022 and September 19, 2022.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 2 Elevated and 3 Low-severity issues.

4 Radically Open Security B.V.

Confidential

The review of the deployment scripts did not uncover any security issues. However, the F-droid client application had

some misconfiguration. The elevated severity issues are about insecure configuration of TLS, where the application

backend accepts TLS version 1.0 and 1.1. The other elevated severity issue is about a possible issue with the XML

parser in the application.

Three low-severity issues were also discovered related to the Android app leaking URLs in the Android log, an insecure

base network config, and the cryptography implementation in the app.

By exploiting these issues, an attacker might be able to capture the traffic between the Android client and the server,

leak information from the device, perform XXE attacks etc.

1.6 Summary of Findings

ID Type Description Threat level

CLN-002 Input validation The application's XML parser implementation might be
vulnerable to XML External entity (XXE) attacks.

Elevated

CLN-005 Insecure configuration The backend domains used by the application accept
obsolete TLS 1.0 and TLS 1.1 protocols.

Elevated

CLN-001 Weak Cryptography The encryption algorithms used in the app use an
insecure mode and padding scheme.

Low

CLN-003 Insecure configuration The base network config of the application allows clear-
text traffic.

Low

CLN-004 Information leakage The Android app (org.fdroid.fdroid.debug ver. 1.14-
alpha3-505-gc8514adb9-debug) logs URLs.

Low

Executive Summary 5

1.6.1 Findings by Threat Level

60.0%

40.0%

Elevated (2)

Low (3)

1.6.2 Findings by Type

20.0%

20.0%

20.0%

40.0%

Insecure configuration (2)

Input validation (1)

Weak cryptography (1)

Information leakage (1)

1.7 Summary of Recommendations

ID Type Recommendation

CLN-002 Input validation • Limit resolution of external entities when XML input is parsed.

6 Radically Open Security B.V.

Confidential

CLN-005 Insecure configuration • Unless support for legacy browsers/devices is needed, disable TLS 1.0
and TLS 1.1.

• If TLS 1.0 support is required, disable TLS 1.0 compression to avoid
CRIME attacks.

CLN-001 Weak Cryptography • Replace all uses of RSA/ECB/PKCS1Padding and SHA1 with more
secure alternatives.

CLN-003 Insecure configuration • Unless it is very explicitly needed for the app to work, do not allow or
use unencrypted, clear-text traffic.

• If it is needed, only allow it to explicitly permitted, trusted domains.

CLN-004 Information leakage • Avoid logging any sensitive information like usernames, passwords,
URLs, tokens etc in the Android log.

Executive Summary 7

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

8 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Confidential

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Mobexler – https://mobexler.com/

• Frida – https://github.com/frida/frida

• Nuclei – https://github.com/projectdiscovery/nuclei

• Sonarqube – https://www.sonarqube.org/

10 Radically Open Security B.V.

https://mobexler.com/
https://github.com/frida/frida
https://github.com/projectdiscovery/nuclei
https://www.sonarqube.org/

Confidential

4 Findings

We have identified the following issues:

4.1 CLN-002 — XML parsers might be vulnerable to XXE attacks

Vulnerability ID: CLN-002

Vulnerability type: Input validation

Threat level: Elevated

Description:

The application's XML parser implementation might be vulnerable to XML External entity (XXE) attacks.

Technical description:

The XML standard allows the use of external and internal entities. These are declared in the DOCTYPE of the

document. When parsing an XML file or input, the content of the external entities is retrieved from an external storage

such as the file system or network.

The following parts of the application implement an XML parser, which might be susceptible to XXE attacks.

Affected Instances:

• src/test/java/org/fdroid/fdroid/data/RepoXMLHandlerTest.java

• src/main/java/org/fdroid/fdroid/IndexUpdater.java

• src/testShared/java/org/fdroid/fdroid/mock/RepoDetails.java

Code snippet:

SAXParserFactory factory = SAXParserFactory.newInstance();

Impact:

If the XML parser has no restrictions for external and internal entities, then this might lead to arbitrary file disclosures or

server-side request forgery (SSRF) vulnerabilities when XML input is parsed.

Findings 11

Recommendation:

Limit resolution of external entities when XML input is parsed. This can be done by:

• If it is not needed, disable external entity support altogether.

• If DOCTYPE handling is not necessary, disable support for all DOCTYPE declarations

• If external entities are required, then use only required protocols (eg: https) and use an entity resolver to resolve

only trusted entities.

In this case, we can use setFeature for the SAX parser to disable the DOCTYPE declaration completely:

try {
 factory.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

 SAXParser saxParser = factory.newSAXParser();

 PrintAllHandlerSax handler = new PrintAllHandlerSax();

 saxParser.parse(FILENAME, handler);

 } catch (ParserConfigurationException | SAXException | IOException e) {
 e.printStackTrace();
 }

In this code, if the SAX parser parses any external entities, it will throw an error.

4.2 CLN-005 — Vulnerable TLS versions accepted

Vulnerability ID: CLN-005

Vulnerability type: Insecure configuration

Threat level: Elevated

Description:

The backend domains used by the application accept obsolete TLS 1.0 and TLS 1.1 protocols.

Technical description:

The Android app communicates with multiple domains. The TLS implementations on these domains accepts weaker TLS

versions, specifically 1.0 and 1.1.

Affected Instances

• f-droid.org (TLS 1.0, 1.1, 1.2 and 1.3 enabled)

12 Radically Open Security B.V.

Confidential

• fdroid.tetaneutral.net (TLS 1.0, 1.1 and 1.2 enabled)

These obsolete protocols may be affected by well-known vulnerabilities such as FREAK, POODLE, BEAST, and CRIME.

As TLS 1.2 (on fdroid.tetaneutral.net) and 1.3 (on fdroid.tetaneutral.net) is also accepted, any communication using

these later versions does not present a risk.

Android has provided support for TLS 1.2 since platform version 16, released in 2012 in Android 4.1 "Jelly Bean", so the

term "legacy" would apply to devices older than that.

Impact:

Use of TLS 1.0 and 1.1 make the communication susceptible to downgrade attacks, as they work on SHA-1 hash for

the integrity of exchanged messages. The handshake authentication is also done on SHA-1, which makes it easier for

an attacker to impersonate a server for MITM attacks. The PCI DSS (Payment Card Industry Data Security Standard)

specifies that TLS 1.0 may no longer be used as of June 30, 2018, and also strongly recommends disabling 1.1, so this

may impact compliance with regulations.

Recommendation:

• Unless support for legacy browsers/devices is needed, disable TLS 1.0 and TLS 1.1.

• If TLS 1.0 support is required, disable TLS 1.0 compression to avoid CRIME attacks.

4.3 CLN-001 — Encryption algorithms using insecure mode and padding
scheme

Vulnerability ID: CLN-001

Vulnerability type: Weak Cryptography

Threat level: Low

Description:

The encryption algorithms used in the app use an insecure mode and padding scheme.

Technical description:

The following sections of the application code contain cryptographically weak implementations:

Findings 13

Affected Instances:

• src/full/java/kellinwood/security/zipsigner/ZipSignature.java

• src/full/java/kellinwood/security/zipsigner/optional/PasswordObfuscator.java

Affected code snippet:

public ZipSignature() throws IOException, GeneralSecurityException {
md = MessageDigest.getInstance("SHA1");
cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");

getLogger().debug("Sig File SHA1: \n" + HexDumpEncoder.encode(sfDigest));
getLogger().debug("Signature: \n" + HexDumpEncoder.encode(signatureBytes));
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");

getLogger().debug("Sig File SHA1: \n" + HexDumpEncoder.encode(sfDigest));
getLogger().debug("Signature: \n" + HexDumpEncoder.encode(signatureBytes));
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");

It is important to analyse the whole code base to see whether any other code is affected, and implement fixes there too,

if needed.

Encryption operations should use a secure mode and padding scheme so that confidentiality and integrity can be

guaranteed. In this case, check the code to find all instances where RSA/ECB/PKCS1Padding and SHA1 are being

used. If sensitive data is being encrypted, then consider improving the encryption mode and padding.

Impact:

If sensitive data is being encrypted using an insecure mode and padding, it might lead to data being stolen or recovered

from the encrypted data.

Recommendation:

• Replace all uses of RSA/ECB/PKCS1Padding and SHA1 with more secure alternatives.

14 Radically Open Security B.V.

Confidential

4.4 CLN-003 — Clear text traffic is enabled in the application

Vulnerability ID: CLN-003

Vulnerability type: Insecure configuration

Threat level: Low

Description:

The base network config of the application allows clear-text traffic.

Technical description:

The Network Security Configuration allows apps to customize their network security settings. These settings can be

configured for specific domains and for a specific app, for example; customize which certificate authorities (CA) are

trusted for an app's secure connections, protect apps from accidental usage of cleartext traffic etc.

The Android application (org.fdroid.fdroid.debug ver.1.14-alpha3-505-gc8514adb9-debug) contains

network_security_config.xml with the following configuration:

<base-config cleartextTrafficPermitted="true"/>

This configuration allows the app to make connections to unencrypted resources.

Impact:

Allowing clear-text traffic impacts confidentiality, authenticity, and protection against tampering. An attacker performing a

machine-in-the-middle attack can eavesdrop on transmitted data and modify it without being detected.

Recommendation:

• Unless it is very explicitly needed for the app to work, do not allow or use unencrypted, clear-text traffic.

• If it is needed, only allow it to explicitly permitted, trusted domains.

Findings 15

4.5 CLN-004 — HTTP Request URLs are logged

Vulnerability ID: CLN-004

Vulnerability type: Information leakage

Threat level: Low

Description:

The Android app (org.fdroid.fdroid.debug ver. 1.14-alpha3-505-gc8514adb9-debug) logs URLs.

Technical description:

We noticed that the application logs URLs in the Android log.

Note: This also applies to the production application version (org.fdroid.fdroid ver. 1.15.2).

Impact:

Logging sensitive information in the Android log is not a recommended practice as this information can (in some

scenarios) be accessed by other applications on the same device. URLs can contain tokens or other sensitive data

which might be logged, leading to the disclosure of that data to other apps.

Recommendation:

• Avoid logging any sensitive information like usernames, passwords, URLs, tokens etc in the Android log.

16 Radically Open Security B.V.

Confidential

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-007 — Review of Nearby Swap Feature

During the pentest, we analysed the Nearby Swap feature of the application closely. This feature allows people to share

installed apps with others, even without internet access (but both the parties must have the F-droid app). The F-droid

app enables user to start a local web server, and host a page with links providing direct download of selected apps.

This feature was tested for multiple cases like exploiting the web server to access local device files, tricking the users

into sharing additional apps, the download process, etc. No security issues were discovered during the test.

5.2 NF-006 — Review of Deployment Scripts

The deployment scripts at https://gitlab.com/fdroid/fdroid-http-fronters/ were reviewed for security

issues; none were discovered.

Non-Findings 17

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

18 Radically Open Security B.V.

Confidential

7 Conclusion

We discovered 2 Elevated and 3 Low-severity issues during this penetration test.

The main purpose of this pentest was to determine the security issues in deployment scripts and the F-droid Android

client app. No major security issues were discovered during the deployment script review, in the time available. However,

the F-droid client app has some weaknesses that, when resolved, would give the application better defences against

attacks, and would correspondingly improve protection of the app's users.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 19

Appendix 1 Testing team

Abhinav Mishra Abhinav has 10+ years of experience in the penetration testing of web, mobile and
infrastructure. He has received numerous accolades from multiple organisations for
responsible disclosure of vulnerabilities. He is also known for providing trainings on web,
mobile and infrastructure security.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

20 Radically Open Security B.V.

